JAVASCRIPT

Beginner to Expert with
Javascript Programming

NICK GODDARD

JavaScript

Beginners Guide on Javascript
Programming
Nick Goddard

Text Copyright © Nick Goddard
All rights reserved. No part of this guide may be reproduced in any form without
permission in writing from the publisher except in the case of brief quotations embodied
in critical articles or reviews.

Legal & Disclaimer
Legal & Disclaimer

This document is geared towards providing exact and reliable information in regards to the
topic and issue covered. The publication is sold with the idea that the publisher is not
required to render accounting, officially permitted, or otherwise, qualified services. If

advice is necessary, legal or professional, a practiced individual in the profession should

be ordered.

- From a Declaration of Principles which was accepted and approved equally by a
Committee of the American Bar Association and a Committee of Publishers and

Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of this document in either
electronic means or in printed format. Recording of this publication is strictly prohibited
and any storage of this document is not allowed unless with written permission from the

publisher. All rights reserved.

The information provided herein is stated to be truthful and consistent, in that any liability,
in terms of inattention or otherwise, by any usage or abuse of any policies, processes, or
directions contained within is the solitary and utter responsibility of the recipient reader.

Under no circumstances will any legal responsibility or blame be held against the
publisher for any reparation, damages, or monetary loss due to the information herein,

either directly or indirectly.

Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely, and is universal as so.

The presentation of the information is without contract or any type of guarantee assurance.

The trademarks that are used are without any consent, and the publication of the trademark
is without permission or backing by the trademark owner. All trademarks and brands
within this book are for clarifying purposes only and are the owned by the owners

themselves, not affiliated with this document.

Table of Contents

Introduction

Chapter 1 Intro to JavaScript Programming

Chapter 2 Development IDE Setup

Chapter 3 My First JavaScript Program

Chapter 4 JavaScript Syntax

Chapter 5 JavaScript Enabling and Disabling
Chapter 6 JavaScript Placement

Chapter 7 JavaScript Variables

Chapter 8 JavaScript Operators

Chapter 9 JavaScript Decision Making

Chapter 10 JavaScript L.oops

Chapter 11 JavaScript Functions

Chapter 12 JavaScript Events

Chapter 13 Dialogue Boxes

Chapter 14 JavaScript Void Keyword

Chapter 15 JavaScript Objects

Conclusion

Chapter 1

Introduction to JavaScript Programming

Language

Welcome to the world of JavaScript, invented in 1995 by Brendan Eich it is still the most
commonly used scripting language around today. It is high level, interpreted, cross
platform and an open source programming language. In this tutorial series, we are going to
learn JavaScript with practical examples. Before we dive in, let’s go over some of the

basics.

JavaScript is an OOP scripting language which mainly used in Web programming. It is
responsible for making web pages interactive; in simple words “it tells web page what to
perform”. Like HTML defines the contents of the web page and CSS defines the layout,
JavaScript make that web page work properly. JavaScript programs are the set of
instructions which are executed in the order they are written so while coding, we should
take care of the logical sequence. Do not get confused between Java and JavaScript, they
both are technically different languages in respect of their design, however their standard

libraries and syntaxes are same.

Now, let’s learn how to install this amazing language on your computer and write our first

JavaScript program.

Chapter 2

Development IDE setup

We are going to use eclipse as development IDE throughout this tutorials for explaining
JavaScript program examples practically. The following are the steps to install eclipse and

set up development environment for JavaScript.

Please follow the below steps:

1. Download the eclipse from below link. Choose the latest stable version of the
eclipse and make sure that if your machine is 64-bit then choose 64-bit eclipse. In

this tutorial, eclipse MARS.1 version is used.

https://eclipse.org/downloads

2. Click on the elipse.exe to open the eclipse which will ask to choose a local

directory as its workspace as shown in the below screenshot.
3. Choose or create a directory on any available drive and click on the OK button to
start eclipse.

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | IC-\JS-Workspace] v Browse...

| [JUse this as the default and do not ask again |
|

4. On the eclipse navigate as File -> New -> Static Web Project. Click on the link as

shown below.

https://eclipse.org/downloads

File Edit Navigate Search Project Run Window Help

4 JPA Project §
Open File... (£ Enterprise Application Project 1
Close Ctrle W (4 Dynamic Web Project]
Close Al Ctri+shiftsw | @4 EJB Project
' Connector Project
e S [(i Application Client Project
Save As... R B
Save Al Ctrl+ Shift+S e Proje o
vt [Project...
., Move... 6 Senviet

¥ Rename.. 2 |G SessionBean (EIB3x)

Refresh B3 4 Message-Driven Bean (EJB 3.x)
i imi >

Convert Line Delimiters To 4§ Web Service

i=h Print.. Ctrl+P 9 Folder

s

| Switch Workspace b LT File
Restart ™ Bample..

fxg Import... [Other. Ctrl+N

g Export...
Properties Alt+Enter
Exit

Hﬁ'lvhrkers 2 ‘ = Propertis‘ il Servers| ¥ Data i

5. It will open up a dialogue box that will ask you to enter the name of the project.
Please enter the project name and click on the ‘Finish’ button as shown below.

e,

F
Static Web Project ;
Create a Web project for simple content (HTML files) only. / '

Project name: | javascript-project] ‘

Project location
[#] Use default location

Location: | C:\odesk\Matthew\JavaScript Tutorials\JS-Workspace\javas Browse...

Target runtime
‘4None> VI ‘ New Runtime...‘
Configuration
Default Configuration v|| Modify..

The default configuration provides a good starting point. Additional facets can later be
installed to add new functionality to the project.

Working sets
[Add project to working sets

Working sets: v Select...

@ < Back [Next > H Finish H Cancel _

6. On the left hand side of Eclipse (project explorer), expand the project directory and
right click on the “WebContent’ folder. To add a HTML file in the current project
navigate as New -> HTML File as shown below.

.* Web - Eclipse

File Edit Navigate Search Project Run Window Help

O~ pEE =] w H#*0-Q- SA4-0FY -~
) Project Explorer &1 sl = 0|
v & javascript-project
B JavaScript Resources
(= WebContent
New 3 ™ Project..
Lo into ‘ File
Show In » 3 Folder
B Copy [saLFile
T Paste = HTML File
X Delete = Eample..
i ™ Other.. CtrlsN
Remove from Context Ctrl+Alt=Shift- Down
g Import...
La Bport.
2 Refresh F3
Validate
Show in Remote Systems view
9 Search.. Ctrl+H |
Run As > \ers| [[] Properties |

It will open up a dialogue box that will ask you to enter the file name. Please enter
the file name and click on the ‘Finish’ button as shown below. This will add up an
HTML file to the current static web project.

£} New HTML File

HTML

Create a new HTML file. < >l

Enter or select the parent folder:

| javascript-project/WebContent ‘

tay 5
lal v L

v & javascript-project
(= .settings
(= WebContent
(= RemoteSystemsTempFiles

File name: | MyFirstlavaScriptProgra mlhtml

 Advanced >>

@ <Back | Net> |[Finsh || Cancel |

At this point, you have successfully completed the development setup for JavaScript
programming. In the next chapter, we are going to develop our first JavaScript program
using this setup.

E[j Project Explorer &2 ES®|e® = 0
v 25 javascript-project
> B, JavaScript Resources

v [WebContent
[£] MyFirstlavaScriptProgram.htrml

Chapter 3
My First JavaScript Program

JavaScript is a scripting language that could be injected anywhere on the web page
between the <script>... </script> HTML tags, however it is always recommended to place

in head section within <head> ... </head> tags.

While parsing the markup text (HTML) on the web page, when the browser program
encounters the <script> tag, it start interpreting all the text present between these tags (till

</script>) as a script. The script tag accepts the following two attributes.

Language this attribute specifies the type of scripting language that we are
using. Its value is “javascript” for JavaScript language. In the latest versions of
HTML, this attribute have been phased out.

Type this attribute indicates the type of scripting language that is in use and its

value will be set to “text/javascript” for JavaScript language.

My First JavaScript Program

In the last chapter, we created an html file (MyFirstJavaScriptProgram.html). Let’s use this

file to write our first JavaScript program as shown below.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>My First JavaScript Program</title>
</head>

<body>

<script language="“javascript” type= “text/javascript”>
document.write(“Welcome to JavaScript First Program™);
</script>
</body>

</html>

Explanation of the JavaScript Code

Here, we have injected the JavaScript code between <body> ... </body> tags of the
HTML. In the JavaScript code/script, we first declared the two attributes as discussed
before and then with the help of the document object we are writing the message

“Welcome to JavaScript First Program” on the web page.

Output

When we execute the above HTML program, the following will be the output.

L= MyFirstiavaScriptProgram.hmi @ My First JavaScript Program (0 i

B * desk/Matthew/JavaScript%20Tutonals/)5- Workspace/javascript-project/WebContent/MyFirstlavaScnptProgram html | B n

Welcome to JavaScnpt First Program

Whitespace and Line Breaks

We can use spaces, tabs, and newlines freely in our JavaScript program as these are
ignored by browser parser program while parsing the JavaScript code. Also, we can freely
format and indent our JavaScript programs in a tidy way that make the script very easy to

maintain, read and understand.

Optional Semicolons

Usually, all JavaScript statements are ended with a semi-colon. But these semi-colons are
optional when each of JavaScript statements are placed on a separate line. Using the semi-
colons at the end of each JavaScript statement is considered as a good programming

practice.

Case Sensitivity

JavaScript language is a case sensitive language. It means, the keywords, variables,
function names, identifiers, etc. should be used with a consistent capitalization of letters.
E.g. the identifier learn and LEARN are different from the point of view of the JavaScript

language.

Comments in JavaScript
The following are the comment styles which are supported in the JavaScript language.
Single line comment is declared as // (double slash).

Multiple line comments is declared as /* JavaScript Statements on the multiple

line */. It works for single line comment as well.

It also recognized the HTML comment (opening sequence) <!—. JavaScript

treats this as a single-line comment as it does with the // comment.

The closing sequence —> of HTML is not recognized by JavaScript, Therefore,

it should be written as //—>.

The following is an example that covers various JavaScript Comments.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>JavaScript Comments</title>
</head>
<body>
<script type= “text/javascript”>
<l— The opening sequence single line comment.

The closing sequence HTML comment//—>

// This is a single line comment.

/%
* This is a multiple line comment in JavaScript
*/
</script>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output (blank)
since JavaScript interpreter has ignored all the comments.

@ JavaScript Comments =0 | [5] JavaScriptComments html [=

-~ Rl C:/ odesk/Matthew/ lavaScnpt %20Tutarials/)S-Workspace/javascript-project/WebContent/ lavaScript Comments.htm| ~| -

Chapter 4

JavaScript Syntax

Like any other programming language, JavaScript syntax has certain set of rules in which

they are constructed.

Programs in JavaScript

A JavaScript program is a sequence of instructions which are parsed and executed by the

browser program. These sequence of program instructions are known as statements.
JavaScript is an objected oriented based programming language.

JavaScript statements are usually separated by semicolons, however placing a

semicolon at the end statement is optional.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>JavaScript Syntax</title>
<script type=“text/javascript”>
var a = 101;
var b = 300;
var sum = a + b;
</script>
</head>
<body>
<script type=“text/javascript”>

document.write(“sum of a + b = “+sum);

</script>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output.

|4] JevaScriptSyntahtml & JavaScript Syntax I

B | file///ClodeskMatthew/ lavaScript %20T utonials/ I5- Workspacejavascript- project/ WebContent/lavaScriptSyntax.htm - | n

sum of a + b = 401

Statements in JavaScript
Statements in JavaScript programming language are composed of the following.
Values
Operators
Expressions
Keywords, and

Comments.

Values in JavaScript

The following are the two types of values in JavaScript.
Fixed values, and
Variable values.

Literals are the fixed values and the variable values are known as variables.

Literals in JavaScript
The following are the rules for writing literals or fixed values in JavaScript.
Numbers are defined with or without decimals.

Strings are the text that are written within single or double quotes.

Variables in JavaScript

The following are the rules for writing variable values which are used to store data values

in JavaScript.
JavaScript language uses the var keyword to declare the variables.

The value to a variable is assigned by an equal sign.

Operators in JavaScript
The following are the operators used in JavaScript language.
Assignment operator (=) is used to assign values to a variable.

Arithmetic operators (+-* /) are used for arithmetic operations such as

addition, subtraction, multiplication, and division.

Expressions in JavaScript

Any expression in JavaScript language is a combination of values, variables, and

operators. These together do computation. The computation is called an evaluation.

An expressions may also contain variable values such as numbers and strings. E.g., “Java”

+ “Script” will concatenate to “JavaScript”.

Let’s understand this with the help of the following example.

<IDOCTYPE html>
<html>
<head>

<meta charset=“IS0O-8859-1">

<title>JS Expressions</title>
<script type= “text/javascript”>

var a = 101; //variable, assignment operator and literal as

number.
var b = 300;
var addition = a + b;
var strl = “Java”; //variable, assignment operator and literal
as String.
var str2 = “Script”;
var str3 = strl + str2;
</script>
</head>
<body>

— {4

<script type= “text/javascript”>
document.write(“Addition of a + b = “+addition);
document.write(“
Concat of strl + str2 = “+str3);
</script>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. The output

shows the addition and the concatenation operation.

W IS Expressions . J5Expressions. htmil

W 7 | file///C/odesk/Matthew/ JavaScript %20Tutorials/ J5-Waorkspace/javascript-project/WebContent/)SExpressions_heml - n

Addition of a + b = 401
Concat of strl + str2 = JavaScrpt

Keywords in JavaScript

Keywords in JavaScript language are used to identify the actions which are required to be
performed. The var keyword directs the browser to create a new variable as JavaScript
Identifiers. In JavaScript language, the identifiers are used to name variables (and

keywords, and functions, and labels).

In JavaScript language, the first character must be a letter, an underscore (_), or a dollar
sign ($) always. The subsequent characters may be letters, digits, underscores, or dollar

signs.

Camel Case and JavaScript
There are the following three ways of joining multiple words into one variable name.
Hyphens — E.g., first-address, second-address, visa-passport, city-name, etc.

Underscore — E.g., first_address, second_address, visa_passport, city_name,

etc.

Camel Case — E.g., FirstAddress, SecondAddress, VisaPassport, InterName,
etc. In JavaScript programming languages, the camel case often starts with a

lowercase letter e.g., firstAddress, secondAddress, visaPassport, cityName, etc.

Character Set in JavaScript

JavaScript language uses the Unicode character set and it covers all the characters,

punctuations, and symbols.

Chapter 5
JavaScript Enabling and Disabling

Web browsers such as Internet Explorer, Mozilla Firefox, Google Chrome, Opera, etc.
come with built-in support for JavaScript. We can enable or disable the browser support
for JavaScript manually. In this chapter we are going to discuss about the procedure of

enabling and disabling JavaScript support in these browsers.

Enabling the JavaScript support in Internet Explorer
The following are the steps to turn on or enable JavaScript support in Internet Explorer.
Navigate as Tools Internet Options from the menu tab.
From the dialog box, select the security tab.
Click on the Custom Level button.
Scroll down the menu and find the scripting option.
Select to enable the radio button under the Active scripting caption.

Lastly, click on the OK button to enable the JavaScript support on IE browser.

Disabling the JavaScript support in Internet Explorer

To turn off or disable the JavaScript support in Internet Explorer, follow the above steps

and select to disable the radio button under Active scripting caption.

Enabling the JavaScript support in Mozilla Firefox
The following are the steps to turn on or enable the JavaScript support in Mozilla Firefox.
Open a new tab and type about: config in the address bar.

There we will find the following warning dialog Select and click on the button

as “I’ll be careful, I promise!” as shown below.

This might void your warranty'

1l e e, | promse!

Here, we will observe the list of configure options in the browser. In the search

bar, type javascript.enabled as shown below.

«

Here, we can find the option to enable or disable the javascript by right-clicking

on the value of that option select toggle.

Upon clicking toggle, if the javascript.enabled is true then it will be converted
to false. This will disable the JavaScript support to the Mozilla Firefox web

browser.

Disabling the JavaScript support in Mozilla Firefox

The following are the steps to turn off or disable the JavaScript support in Mozilla Firefox.
If javascript is disabled then it can be enabled upon clicking toggle, after following the

similar steps as explained before.

Enabling or disabling the JavaScript support in Google Chrome
The following are the steps to enable or disable the JavaScript support in Google Chrome.

Click on the Chrome menu present at the top right hand corner of the Chrome

browser as shown below.

=R R=0 Nl
New tab tri+v T |
MNew window Cirl+N
New incognito window Ctrl+ Shift+ |
History .
Downloads Ctri+)
Bookmarks >
Zoom - 100% =+ ST

Print_. trl+ P

Find... trl+f
_ e 4
Edlit Cut Copy Paste

Help *

Kj @ Exit Ctrl+ Shift+Q

Select the Settings and then click on Show advanced settings present at the end
of the page.

Default browser

| Make Google Chrome the cefault browser |

Google Chrome is not cumentty your default browser,

Show -arced settings..

Under the Privacy section, click on the Content settings button as shown below.

Privac
Cantent settings far rowsing data..
e e oD services 1o 2 o expirants & -
eryices. Learm more
L4 2 & wel service P rescive e
7 ervice 80 Fe Tpiete searches a - e - e 3D -
L 2 ed] e
s A it o - & & &
L - device from - l
Use 3 web service to help resoive spe L
= & @ nogle
end 2 "Do b e
Passwords and forms
o 3 o] A
4 et 2 Your wel
Web content
Medium » | Customize fonts
@ O 00 -

In the “Javascript” section on the Content settings, select “Do not allow any site
to run JavaScript” or “Allow all sites to run JavaScript (recommended)” to disable
and enable the JavaScript support on the Chrome browser respectively. The

Content settings page is shown below.

Key generation

Enabling or disabling the JavaScript support in Opera

The following are the steps to enable or disable the JavaScript support in Opera.
Open the Opera browser and follow Tools Preferences from the menu.
Then, Select the Advanced option from the dialog box.
Next, select the Content from the listed items.
From there, select Enable JavaScript checkbox.
Lastly, click OK button to enable the JavaScript support in Opera browser.

Similarly, to disable the JavaScript support in Opera browser, we should not select the

Enable JavaScript checkbox and click on the OK button.

Warning for Non-JavaScript Browsers

When we have to do something very important by using the JavaScript, then we can show
a warning message to the user by using the<noscript> tags. We can add a noscript block

immediately after the script block as shown below.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>No Script tag</title>

</head>

<body>
<script type=“text/javascript”>
document.write(“JavaScript Support is enabled on your browser!”)
</script>
<noscript>

Please enable JavaScript support on your browser.

</noscript>

</body>

</html>

If any of the above browser does not support JavaScript or JavaScript support is disabled,

then the message between the <noscript></noscript> tags will be shown on the screen.

Chapter 6

JavaScript Placement

Placement of JavaScript code in the HTML document is very flexible and can be placed in

the following ways.

JavaScript in <head>...</head> section — It is the most preferred way to
include the JavaScript code in the head section of the HTML document. We can
place the JavaScript code or functions in the head section and can access these

functions on the web elements events as shown below.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>JS in head section</title>
<script type=“text/javascript”>
function showAlert(){
alert (“This is an alert from Head section!”);
}
</script>
</head>
<body>

<input type=“button” onclick=“showAlert();” value=“Call

JavaScript”/>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the
output, we can see the alert with a message as “This is an alert from Head section”, when

we click on the button present on the web page.

@)5in head section 7 | [3] JSHead htm -

o file /C odesk/Matthew/ JavaScript %20Tutonals/15-Workspace/javascript- project/WebContent/)5SHead htmi =

[Call JavaScript |

| This is an alent from Head section!

JavaScript in <body>...</body> section — we can also place the JavaScript
code in the body section of the HTML code, however this approach is not
preferred as we call JavaScript functions from body section which are preferably
defined in the head section of the HTML document.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>JS Body</title>

</head>

<body>

<script type=“text/javascript”>

document.write(“Welcome to JavaScript Tutorials!”)
</script>
<p>Body section of the HTML document.</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the
output, we can see the text “Welcome to JavaScript Tutorials!” written via JavaScript on

the HTML page which is placed in its body section.

|

@ ISBody I | [5] JSBody.htmi -

»

o .f-le.-.-'-'C.-Dacsk-'Matthe-—'la.aS(npf“:EDTu‘torials.'.l'S-'-‘Jorispacc:‘_iava;cript-aro}n‘t'h’-'eb[ontmt-JSSody'.hrmI >
Welcome to JavaScnpt Tutonials!

Body section of the HTML document

JavaScript in <body>...</body> and <head>...</head> sections — in this
approach, the JavaScript code is placed in both the head and the body section of

the HTML document as shown in the following example.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>JS Head and Body</title>

<script type=“text/javascript”>

function showAlert(){

alert(“This is an alert from Head section!”);

}
</script>
</head>
<body>
<script type=“text/javascript”>
document.write(“Welcome to JavaScript Tutorials!”)
</script>
<p>Body section of the HTML document.</p>

<input type=“button” onclick=“showAlert();” value=“Call

JavaScript”/>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the

output, we can see the text “Welcome to JavaScript Tutorials!” written via JavaScript on

the HTML page which is placed in its body section. At the same time, when we click on

the button, it will display an alert message as “This is an alert from Head section”. This is

the JavaScript function called on click event of the button which is defined in the head

section of the HTML document.

@ IS Head and Body 7 | [3] JSHeadBody.hml =0
| s ff-Ie:.-.-'.-'E:-'Ddesh’.-'Matthew-'Jwa'knct“\-lI)Tumrials-"l'i-‘d'-'c:ﬁ:space_-'ja'.'ascr-m-pls;’ect-"l\'eb(ontent.-'.ISHcmH{}d}' html | -

Welcome to JavaScnpt Tutorials!

Body section of the HTML document

ot o Mumgrkomudpege X

| Thisis an slert from Head section!

[]

JavaScript placed in and external file and include in <head>...</head>
section — it is one of the best approach of placing all the JavaScript code in an
external file which has file extension as jscode.js and we include this file in the
head section of the HTML document. All the functions which are present in this
file can be called on various web elements events defined in the body section of
the HTML document. In the following example we have declared the function as

showAlert () in a separate file “demo.js” located in js directory.

function showAlert(){

alert(“This is an alert from Head section!”);

We are including this external JavaScript file in the head section of the HTML

document as shown below.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>JS External File</title>

<script type=“text/javascript” src="“js/demo.js”></script>
</head>

<body>

<input type=“button” onclick=“showAlert();” value=“Call

JavaScript” />
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the
output, we can see the alert with a message as “This is an alert from Head section”, this is
the JavaScript function called on click event of the button which is defined in the external
demo.js file and included in the head section head section of the HTML document. This

works the same way as if we include the JavaScript function code in the head section of
the HTML document.

@ IS External Flle] | |5 ISHeadBody htmi & demo.js |2 ISExtemnalFile.htrmil ol
| !fiIz.-‘.'-'C._-‘adhk.?.l.m:hm_-'lavaScnp‘t‘?a_f'aTumnAl:.-'rS-Wnrkspace,'p-uns:rapt-pm,ect."-'\febtonttnt-'lSExttmalFile_mml s B .
Call JavaScrpt

| Thas iz an alert from Head section!
:

Chapter 7

JavaScript Variables

Datatypes in JavaScript

It is the characteristic of every programming language to support operations on the set of
data types. These are the actual values which are defined and manipulated in any
programming language. Like any other programming language, the JavaScript language

allows us to work with the following three primitive data types.
Numbers, e.g. 1, 23, 10.50, 23.8990 etc.
Strings or text data, e.g. “JavaScript”, “This is my language”, etc.
Boolean, as always it could be either true or false.

Apart from these three primitive datatypes, JavaScript language also defines the following

two trivial data types. Each of which defines only a single value.
Null.

Undefined.

Also, JavaScript language supports a composite data type known as object. JavaScript

objects will be covered in detail later in this tutorial.

This is to be noted that the JavaScript language does not make a distinction between
integer values and floating-point values. JavaScript considers all numbers as the floating-
point values. JavaScript represents numbers by using the 64-bit floating-point format
which is defined by the IEEE 754 standard.

Variables in JavaScript

As discussed earlier, the JavaScript language has variables as data containers where we
can place data into these containers and then refer this data by simply naming the

container. We declare JavaScript variable with the var keyword as shown below.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>JavaScript Variables</title>
<script type=“text/javascript”>
var name = “Appy”;
var age = 21;
var salary = 10000, expenses = 12000;
alert (“Name: “+name+” Age: “+age+“\nSalary: “+ salary
+” Expenses: “+expenses)
</script>
</head>

<body>

</body>

</html>

Explanation of the JavaScript code

Storing of a value in a variable is known as variable initialization. We can do variable
initialization at any point of time during the variable creation or the time when we need

that variable.

For instance, we have created four variables in the above code and assigned value to each

of these variables. E.g., name = “Appy”, salary = 10000, etc.

Output

When we execute the above HTML program, the following will be the output. In the

output, we are displaying the values that was assigned to the data container through an

alert.

& JavaScnpt Vanables © J5Variables.html J5Head htmil

] fibee/ 7/ Cof odesh/ Matthew/JavaScript %20 Tutonals/ JS-Werkspace/javascript-project/ WebContentJSVanables html < | e n

Message from webpage x

Name: Appy Age: 21
Salary: 10000 Expenses: 12000

This is to be noted that the var keyword is used only for declaration or initialization, once
for the life of any variable name in a HTML document. We should not re-declare same
variable more than once. In JavaScript, the variable can hold a value of any data type
(number, string, etc.) as it is an untyped language. Unlike other typed languages (e.g., C,
C++, JAVA, etc.), we don’t need to tell JavaScript complier during variable declaration
that what type of value the variable will hold. Also, the value type of a variable can
change during the execution of a program which the JavaScript parser takes care of it

automatically.

Variable Scope in JavaScript

The scope of a variable is defined as the region of the program in which it is defined. The

JavaScript variables can have the following two scopes.

Global Variables scope — is a global scope which means it can be defined
anywhere in the JavaScript code and visible everywhere in the current HTML

document.

Local Variables scope — is a local variable which will be visible only within a
function where it is defined. The function parameters are always local to the

function.

This is to be noted that, within the body of a function, if both local and global variables

are defined with the same name then local variable takes precedence over global variable

always. Lets’ understand this concept in the best way with the help of the following

example.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>Variable Scope</title>
</head>
<script type = “text/javascript”>
var demoVar = “global scope”; // A global variable
function checkVariableScope() {
var demoVar = “local scope”; // A local variable
document.write(demoVar);
}
</script>

<body onload = checkVariableScope();>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the
output, we can observe the values as “local scope” as a local variable takes precedence

over a global variable, if both are defined with the same name.

2 VarableScopehtml & ClodeskiMatthew'\JavaScript Tutonals'JS-Workspace'javascnipt- project’ WebContent\ VariableScope.htmi =ylw

local scope

Variable Names in JavaScript
The rules should be obeyed while naming the variables in JavaScript language.

No use of the variable name which are reserved keywords. These keywords are
mentioned in the last section of this chapter. E.g. finally, goto, etc. variable names

are invalid.

Variable names in JavaScript language should never start with a number (0-9).
However, they can begin with a letter or an underscore character. E.g. 10name is

an invalid variable but _10name is a valid variable name.

Variable names in JavaScript are case-sensitive. E.g. Address and address are

treated as two different variables names in JavaScript language.

Reserved Words in JavaScript

The following is a list of all the reserved words in JavaScript language. These reserved

words cannot be used as JavaScript variables, loop labels, functions, or any object names.

abstract debugger final instanceof Public
boolean default finally int Return
break delete float interface Short

byte do for long Static

case

catch

char

class

const

continue

double
else
Enum
Export
extends

FALSE

function
Goto
If
implements
import

In

native
new
null
package
private

protected

Super
Switch
synchronized
This
Throw

Throws

Chapter 8

JavaScript Operators

When we add or subtract two values, e.g. adding 5 with 6 (i.e. 5 + 6), here ‘+’ is known
the operator and (5 + 6) is known as expression. The JavaScript language supports the

following types of operators.

Arithmetic Operators

The following are the arithmetic operators which are supported by the JavaScript

language.

+ (Addition) It is used to add two operands. X +Y

- (Subtraction) It is used to subtract the second X -Y
operand from first operand.

* (Multiplication) It is used to multiply two X*Y
operands.

/ (Division) It is used to divide two X/Y
operands i.e. divide numerator
with the denominator.

% (Modulus) This operator outputs the X%Y
remainder of an integer
division.

++ (Increment) It increase the integer value by X++
1.

— (Decrement)

It decrease the integer value by Y—

1.

Comparison Operators

The following are the comparison operators which are supported by the JavaScript

language.

S No. Comparison

Operator

1 == (Equal)

2 = (Not Equal)

3 > (Greater than)

4 < (Less than)

Description

This operator is used to Check
if the value of two operands are
equal or not, if both values are
then the

becomes true.

equal, condition

This operator is used to check
if the value of two operands are
equal or not, if the values are
unequal, then the condition

becomes true.

This operator is used to check
if the value of the left operand
is greater than the value of the
right operand, if it is the case,
then the condition becomes

frue.

This operator is used to check
if the value of the left operand
is less than the value of the

right operand, if it is the case,

Example

Ex: (X ==
Y) is

true.

not

Ex: (X!=Y)
is true.

Ex: (X >Y)

is not true.

Ex: (X <Y)
is true.

5 >= (Greater than or
Equal to)

6 <= (Less than or
Equal to)

then the condition becomes

frue.

This operator is used to check if
the value of the left operand is
greater than or equal to the
value of the right operand, if it
is the case, then the condition

becomes true.

This operator is used to check if
the value of the left operand is
less than or equal to the value
of the right operand, if it is the
then the

case, condition

becomes true.

Ex: (X >=
Y) is

true.

not

Ex: (X <=

Y) is true.

Logical (or Relational) Operators

The following are the logical or relational operators which are supported by the JavaScript

language.
S No. | Logical Operator Description Example
1 && (Logical AND) If both the operands are non- Ex: (X &&
zero, then this operator makes Y) is true.
the condition becomes true.
2 || (Logical OR) If any of the two operands are Ex: (X || Y)
non-zero, then this operator is true.

makes the condition becomes

frue.

3 ! (Logical NOT) This operator reverses the Ex:!(X &&
logical state of its operand. If a Y) is false.
condition is true, then the
Logical NOT operator will

make it false and vice-versa.

Assignment Operators

The following are the assignment operators which are supported by the JavaScript

language.
S No. Assignment Description Example
Operator

1. =(Simple This operator is used to assign Ex: Z = X - Y

Assignment) the value from the right side will assign the
operand to the left side wvalue of X - Y
operand. into Z variable.

2. += (Add and This operator is used to add the Ex: Z += X is
Assignment) right operand to the left equivalent to Z

operand and assigns the result =7 + X
to the left operand.

3. —-= (Subtract This operator is used to Ex: Z -= X is
and subtract the right operand from equivalent to Z
Assignment) the left operand and assigns the =7 - X

result to the left operand.

4. *= (Multiply This operator is used to Ex: Z *= X is
and multiply the right operand with equivalent to Z
Assignment) the left operand and assigns the =7 * X

result to the left operand.

5. /= (Divide and This operator is used to divide Ex: Z /= X is
Assignment) the left operand with the right equivalent to Z
operand and assigns the result =7 /X

to the left operand.

6. %= (Modules This operator is used to takes Ex: Z %= X is
and the modulus using two equivalent to
Assignment) operands and assigns the result Z=7 % X

to the left operand.

Conditional (or ternary) Operators

The following is the conditional or ternary operator which is supported by the JavaScript

language.
S No. Conditional Description Example
Operator
1. ? : (Conditional) If Condition is true? Then Ex: (X > Y)?
value X : Otherwise value Y. “yes”: “No”

Bitwise Operators

The following are the bitwise operators which are supported by the JavaScript language.

S No. Bitwise Operator Description Example

1. & (Bitwise AND) This operator is used to Ex: (X &Y)
perform a Boolean AND is?2.
operation on each bit of its

integer arguments.

2. | (Bitwise OR) This operator is used to Ex: (X | Y)
perform a Boolean OR is 3.
operation on each bit of its

integer arguments.

3. A (Bitwise XOR) This operator is used to Ex: (X AY)
perform a Boolean exclusive is 1.
OR operation on each bit of its
integer arguments. Exclusive
OR means that either operand
one is true or operand two is
true, but not both.

4. ~ (Bitwise Not) Bitwise Not is a unary operator X /Y
Ex: (~B) is -4 and operates by reversing all

the bits in the operand.

5. << (Left Shift) This operator is used move all Ex: (X <<
the bits in its first operand to 1) is 4.
the left by the number of places

specified in the second

>> (Right Shift)
>>> (Right shift
with Zero)

operand. New bits are filled
with zeros. Shifting a value left
by one position is equivalent to
multiplying it by 2, shifting
two positions is equivalent to

multiplying by 4, and so on.

In Binary Right Shift Operator,
the left operand’s value is
moved right by the number of
bits specified by the right

operand.

This operator is just like the >>
operator, except that the bits
shifted in on the left are always

Zero.

Ex: (X >>
1)is 1.

Ex: (X >>>
1)is 1.

Chapter 9

JavaScript Decision Making

While writing a program, most of the time we face a situation where we have to make a
decision. Decision making is the anticipation of conditions that could occur while
execution of a program and there is a need to specify some actions according to those

conditions.

In a decision making structures, there is a condition which is either a single expression or
multiple expressions. This condition when evaluated produce either TRUE or FALSE as
outcome. Based on the outcome, we need to determine which action to take and which

statements to execute. Refer the figure below to understand it clearly.

Like any other programming language, the JavaScript language supports conditional
statements which are used to perform different actions based on different conditions. The

following are the conditional statement supported by the JavaScript language.

if statement.
if...else statement
if...else if... statement.

Switch case statement

Let’s understand these statements with the help of a JavaScript program.

if statement — the if statement is a basic control statement which allows the
JavaScript code to make decisions and execute statements based on required

condition. The following is the syntax.

Syntax and Example

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>Basic IF Statement</title>
</head>
<body>
<script type=“text/javascript”>
var salary = 10000;
var expenses = 12000;
if(expenses > salary){

document.write(“Please either start earning more or spend less!
");

}
</script>

<p>We are inside the body section...</p>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Since the

condition in the “if” statement is true therefore, it will write the given text on the HTML

page.

@ Basic IF Statement [|] BasicifStatement.htmi =

m
B o | file/C/odesk/Matthew/ JavaSconpt 30T utorials/)5-Workspace/javascript- projectWebContent/BasicifStaternent htr ~ | n
Please either start earning more or spend less!

Set the vanable to different value and then trv

if...else statement — the ‘if...else’ statement is the another form of the control
statement which allows the JavaScript code to execute statements in a more

controlled way. The following is syntax and example.

Syntax and example

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>If Else Statement</title>

</head>

<body>
<script type=“text/javascript”>
var salary = 12000;
var expenses = 10000;
if(expenses > salary){

document.write(“Please either start earning more or spend less!
");

}
else {
document.write(“You have enough money to spend!
");
}
</script>

<p>We are inside the body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Since the
condition in the “if” statement is false therefore, it has entered the else block and has

written the given text on the HTML page.

@ ¥ Else Staternent =2 | WElseStatement html A

W 7 filer//C odesk/ Matthew/ JavaSeript %20T utonals/15-Workspac efjavascript-project\WebC ortent/ fElseStaternent.bitml - -
You have enough money to spend!

We are insade the body section

if...else if... statement —the if...else if... statement is another advanced form
of if...else which allows the JavaScript code to make a correct decision out of the
defined several conditions. It has the series of if statements in which each if is a
part of the else clause of the last statement. These Statement(s) are executed based
on the true condition, if it happens that none of the conditions is true, then the code
present in the else block will be executed. The following is the syntax and

example.

Syntax and Example

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>If Else If Statement</title>
</head>
<body>
<script type=“text/javascript”>
var salary = 12000;
var expenses = 10000;

if(expenses > salary){

document.write(“Please either start earning more or spend less!
");

}
else if (salary > 13000){

document.write(“You have enough money to spend!
");

}

else {

document.write(“Although you have enough money but

you need to be careful!");

}

</script>

<p>We are inside the body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Since the
condition in the “if” statement is false therefore, it has entered the else if block where
there is another condition that happens to be false. Hence, it has written the given text on

the HTML page which is present in the last else block.

@ 'f Else If Statement 0[] HElselfStatement.htrm| -

W ¢ | file///Clodesk/Matthew/JavaScript %20Tutonals/I5-Workspacejavascript-project Web-Content/IfElselfStatement.htrr | B H
Although vou have enough money but you need to be careful!

We are inside the body section

Switch Case Statement

Starting with the JavaScript 1.2 version, it has started supporting a switch statement that

handles exactly the situation as implemented by the repeated if...else if statements.

A switch statement is used to give an expression that evaluate the several different

statements based on the value of the expression. The JavaScript interpreter inspects each
case against the return value of the expression until a match is found. If no match is found

then it uses the default condition.

Also, there is a break statements which is present at the end of a case code statement. If
break is not declared here, then the interpreter would continue executing all the statement

in each of the following cases.

The following is the syntax and example of switch case statement.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Switch Case Statement</title>

</head>

<body>
<script type=“text/javascript”>

var expensecode=‘X";

document.write(“Entering the switch block
”);
switch (expensecode)

{

case ‘X’: document.write(“Please either start earning more or

spend less!");

break;

case ‘Y’: document.write(“You have enough money to spend!
");

break;

case ‘Z’: document.write(“Although you have enough money

but you need to be careful!");

break;

default: document.write(“No match found!
)
}
document.write(“
Exiting the switch block
”);
</script>
<p>We are inside the body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. The

program has written the text on HTML page whose case character (‘X’) is matching.

o Switch Case Statement . |3 SeatchCaseStaternent.htmi - (-

W - | file///C/odesk/Matthew/ JavaScript %20 Tutonals/ I5-Workspace/javascript-project/WebContentSwitchCaseStatemen | .

Entering the switch block
Please either start earning more or spend less!
Exiting the switch block

We are inside the body section..

Chapter 10

JavaScript Loops

When any program is executed, it runs sequentially. The statement which appears first in
the sequence is executed first then the next statement and so on till the last statement of
the program. Many times there is a requirement to run same block of code in a program

multiple times then there arises a need of a control structure known as loops.

A loop makes a statement or group of statements in a block of code to execute multiple
times if the condition is true and exits the loop when the condition becomes false. Such

loop is illustrated in the below diagram.

|
& —om

If false

a

Like any other programming language, the JavaScript support looping and the following

types of loops and the loop control statements.
While loop
Do...while loop

For loop

for...in loop

Loop control statements

While loop statement

While loop is the most basic loop in JavaScript language. This loop execute a statement or
piece of code block repeatedly as long as an expression is held true. The loop terminates,
once the expression is false. The following is the syntax and the example of while loop

statement.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>While Loop</title>
</head>
<body>
<script type=“text/javascript”>
var counter = 0;
document.write(“Entering while Loop!”);
while (counter < 5){
document.write(“Current Counter is : “ + counter + “
);
counter++;
}
document.write(“Exiting while Loop!”);
</script>
<p>We are inside body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. The counter

will write 5 times on the HTML page as it held its condition true 5 times.

@ While Loop 1 | 5] WhileLoop.htmi =

=
| » ‘

[IR file. /) odesiy Matthew, JavaScnpt 5620

Entening whule Loop!Current Counter 15 - 0
Current Counter 15 - 1

Current Counter 1s : 2

Current Counter 15 - 3

Current Counter 15 - 4

Exiting while Loop!

We are inside body section.

Do...while loop statement

The do...while loop is similar to that of the while loop except that the condition check in
case of do...while loop happens at the end of the loop. This means that the code block
inside the loop will always be executed at least once, even if the condition is false. The

following is the syntax and the example of while loop statement.

<IDOCTYPE html>
<htmI>
<head>
<meta charset=“ISO-8859-1">
<title>Do While Loop</title>
</head>
<body>
<script type=“text/javascript”>

var counter = 0;

document.write(“Entering while Loop!”);
do {
document.write(“Current Counter is : “ + counter + “
");
counter++;
}
while (counter < 5)
document.write(“Exiting while Loop!”);
</script>
<p>We are inside body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. The counter
will write 5 times on the HTML page as it held its condition true 5 times including the first

no check condition.

n

@ Do While Loop 2 | [2] DoWhieloop.html =

»

[_ﬁle--'-.-'c:-'cdesk_-Llan‘heu-Ja-.aSnipt‘?::'DTan-nals-'JS-"Jorlrspaca.-_|auascript-projgﬂ.-'w'eb[ontent-'DoL's‘h-,iel_ocp.hth =3

Entening while Loop!Current Counter 1s : 0
Cusrent Counteris - 1

Current Counter 1s © 2

Cugrent Counter 1s - 3

Current Counter 1s - 4

Exsting while Loop!

We are inside body section. .

For loop statement

The ‘for’ loop is very important and mostly used looping statement in JavaScript

programming. The command has the following three important parts.

Loop initialization — it is where we initialize our counter value to a starting

initial value. This statement is executed before the looping begins.

Test statement — it has the actual condition which is evaluated to be true or
false. If this condition evaluates to be true, then the block of code inside the loop

will be executed, otherwise, if false then the control will exit the loop.

Iteration statement — it is place where we increase or decrease the counter

value which was initialized in the first statement.

The good part of for loop is that we can put all of these three statement parts in a single

line which is separated by semicolons. The following is the syntax and the example.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>For Loop</title>

</head>

<body>
<script type=“text/javascript”>
document.write(“Entering while Loop!”);
for(counter = 0;counter < 5; counter++){
document.write(“Current Counter is : “ + counter + “
);
}
document.write(“Exiting while Loop!”);
</script>
<p>We are inside body section...</p>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. The counter
will write 5 times on the HTML page as it held its condition true 5 times till the counter

value becomes 5 and the loop exits.

@ Forloop ! | [£] Forloophtml ol
s B 7 | file///Clodesk/Matthew/ JavaScript %20Tutorials/ J5- Workspace/javascript- project/ WebContent/Forl oop.htmi| | > n

Entering whale Loop!Current Counter 15 0
Current Counter 1s : 1

Current Counter 1s : 2

Current Counter 1s : 3

Current Counter 15 : 4

Exiting wiale Loop!

We are inside body section..

For...in loop statement

The for...in loop is used only in the special cases where there is need to loop through an

object’s properties. The following is the syntax and the example for for...in loop.

<IDOCTYPE html>
<htmI>
<head>
<meta charset=“ISO-8859-1">
<title>For In Statement</title>
</head>
<body>
<script type=“text/javascript”>
var prop;
document.write(“Object Properties of Navigator
 ©);
document.write (“Entering the loop!”);

for (prop in navigator) {

document.write(prop);

document.write(“
);

}

document.write (“Exiting the loop!”);

</script>

<p>We are in the body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the
output, we have iterated through the “navigator” object and displayed all the object

properties of the web browser’s navigator object.

@ Forin Statement 71 | |5| ForinStatement html =
B | file//Clodesk/Matthew/ JavaScript 20T utonals/JS-Workspace/javascript-praject/WebContent/ForinStatement html | [-
Object Properties of Navigator A

Entering the loop'appCodeName
appMinorVersion
browserLanguage
cookieEnabled

cpuClass

language

mimeTypes

plugins

systemlanguage
uvserLanguage
maxTouchPoints
msManpulationViewsEnabled
msMaxTouchPomnts
msPointerEnabled
pointerEnabled

webdriver

geolocation

appName

appVersion

platform

product

userAgent

vendor

onlLine

msSaveBlob [V
msSaveOrOpenBlob

Summary of Loops in JavaScript

Loop Type Description

While loop type, repeats a statement or group of
statements while a given condition is true. It tests
the condition each time it executes the loop body

while loop and it exits the loop when condition becomes false.

For loop type executes a sequence of statements
multiple times and abbreviates the code that

for loop manages the loop variable.

It is a loop within a loop. In JavaScript, we can use
a while loop in another while or for loop or for loop

nested loops in another while or for loop.

Loop control statements

Loop control statements in JavaScript language are used to change execution from its
normal sequence. When such execution leaves a scope, all automatic objects that were

created in that scope are destroyed or removed.

In JavaScript language, the following loop control statements are supported.

Control Statement Description

The break statement in JavaScript is used to
terminate the loop statement and transfers
execution to the statement immediately

break statement following after the end of loop.

The continue statement in JavaScript is used to
cause the loop to skip the remainder of its body
and immediately retest its condition prior to

continue statement | reiterating the looping body.

Let’s understand these loop control statement in a better way with the help of the

following example.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>Loop Control Statement</title>
</head>
<body>
<script type=“text/javascript”>
var counter = 0;
document.write(“Entering while Loop!
");
while (counter < 5){
if (counter == 3){
counter++;
continue;
}
if (counter == 4){
break;
}
document.write(“Current Counter is : “ + counter + “
);
counter++;
}
document.write(“Exiting while Loop!”);
</script>
<p>We are inside body section...</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. In the
output, we can see that the counter value are printed 3 times (0, 1 and 2) and then the loop
exited. This is because when the counter value has become 3, we are executing continue
loop control statement where it has incremented the counter to 4 and has skipped the
document writing part and recheck the condition. When the counter value has become 4,
we are executing the break loop control statement which will eventually exit out from the

current loop skipping document writing statement again.

{=] LocpControfStatement html @ Loop Control Statement -
H o file///C/odesk/Matthew/ JavaScript %20Tutonals/I5-Workspace/javascript-project/WebContent/LoopControlStateme | n

Entening while Loop!

Current Counter1s : 0

Current Counter 15 - |

Cugrent Counter 13

Exiting while Loop!

i
~

We are inside bodv section

Chapter 11

JavaScript Functions

A function may be defined as a block of code that is well organized and reusable multiple
times to perform a number of operations in a program that demands high modularity and
reusability. It eliminates the need of writing the same piece of code again and again and
helps the programmers in writing modular codes. With the concept of functions, it is
possible for a programmer to break a big program into a number of small and manageable

functions which eventually reduces the redundancy.

Like any other programming language, the JavaScript language also supports the required
features to write modular code by using functions. Since the beginning of this tutorials, we
are using functions like “alert ()” and “write ()” which gives us a little hint about the
operations of the functions. These functions are in-built JavaScript functions. In JavaScript
language, we can write our own functions like any other programming language that we

are going to learn in this chapter.

Function Definition

Functions are useable at any point in the code for which we have to define them only
once. In JavaScript, we define a function by using the function keyword which is followed
by a unique function name, a list of parameters (that could be empty), and a statement
block surrounded by curly braces. The following is the syntax and the example of the

JavaScript function.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>Function Definition</title>

<script type=“text/javascript”>

function sayHelloToJavaScript() {
alert (“Welcome to the world of JavaScript!™);
}
</script>
</head>

<body>

</body>

</html>

Calling a Function

We can invoke a JavaScript function later in the script or on the HTML web elements

events, we simply need to write the name of that function as shown in the following code.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Function Definition</title>

<script type=“text/javascript”>
function sayHelloToJavaScript() {

alert (“Welcome to the world of JavaScript!™);

}

</script>

</head>

<body>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we
are calling the JavaScript function on click event on the button which display an alert with

message which is picked up from the head section of the HTML where JavaScript function

is defined.
@ Function Definition &2 [Z] FunctionDef htmi = 0
B i_filr:-'--t..-'rjdesk_-T,iarthm.'m—a'kr'r;:t%EClTu!ulials-'.IS Workspace/javascript- project/WebContent/FunctionDef. htrnd = -

Call JavaScnpt

Body section of the HTML document | R

| Welcome to the warld of JavaScrpt!

Function Parameters

Till this point, we have used the functions which were without the input parameters. In a
JavaScript function, we can pass different parameters while calling it. The values of the
passed parameters can be used inside the function and we can do the manipulation on
these parameters. A function can take none to multiple parameters. Multiple parameters in
a function are separated by commas. The following is the syntax and the example of the

parameterized function.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>Parameterized Function</title>

<script type=“text/javascript”>

function sayHelloToJavaScript(message,entity,lang) {
alert(message+” to the “+entity+” world of “+lang+“!”);
}
</script>
</head>
<body>

<input type=“button”

onclick=*sayHelloToJavaScript(‘Welcome’,"World’,‘JavaScript’);”
value=“Call JavaScript”/>

<p>Body section of the HTML document.</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we
are calling the parameterized JavaScript function on click event on the button which
display an alert with message which is picked up from the head section of the HTML
where JavaScript function is defined. Here, we are passing three parameters in the

function which we are displaying in the alert message.

& Pararneterized Function |=] ParamtesizedFunction,htmi

B | file/ 70/ odesk/Matthew/ JavaScript %20Tutorials/J5- Workspace/javascript- project/WebContent/ParamterizedFunction | e

Call JnvaScripl-
Bodysecionofihe HIML dooment

| Welcome to the World world of JavaScript!

The return Statement

A JavaScript function can return a value and this return statement is optional. Return

statement is used when we want to return a value from a function. It should always be the

last statement in a JavaScript function. Let’s understand the use of return function with the

help of the following example.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>Return Function</title>

<script type=“text/javascript”>

function concatString(message,entity,lang) {
var str = message+entity+lang;
return str;
}
function writeToDoc(message,entity,lang){
concatStr= concatString(message,entity,lang);
document.write (concatStr);
}
</script>
</head>
<body>

<input type=“button” onclick=“writeToDoc(‘Welcome to the
‘,‘World of’,‘JavaScript!”);” value=“Call JavaScript”/>

<p>Body section of the HTML document.</p>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we
are calling the JavaScript function on click event on the button which display the message
on the HTML page which is picked up from the head section of the HTML where
JavaScript function is defined. Here, we have passed three strings in the “writeToDoc”
function as the parameters which calls “concatString” function which returns the

concatenated string that is written on the document.

¢ Codesk\Matthew'\JavaScript Tutorials\J5-Werkspace\ javasonpt-project WebContent' RetumFunction.. | ReturnFunction.tmi L

B 7 | file///C/odesk/Matthew/ JavaScnpt320Tutorials/15-Workspace/javascript- project/ WebContent/RetumFunction html "3 n

Welcome to the World ofJavaScript!

Chapter 12

JavaScript Events

JavaScript Events are the means through which JavaScript interacts with the HTML
document. These events are triggered when any value is manipulated on the HTML page
either by the user or the browser. E.g. when we load a HTML page, it is known as an
event. Similarly, when we click a button on the page, it is also an event. We can think of
other examples of events such as pressing any key, submitting a form through button,

changing the size of a window, etc.

Programmers can use these JavaScript events to trigger and execute JavaScript coded
responses. These responses includes closing of a window on button click, displaying alert

message to user, validating the form data, etc.

JavaScript events are the part of the Document Object Model (DOM) Level 3. All HTML
web element contains a set of events which are capable of triggering JavaScript function

code.

The following are the few examples to understand the relation between Event and

invoking JavaScript function code.
onclick Event Type

It is the most frequently used event type that triggers a JavaScript code when we left click
the button of mouse on HTML page or web element. Here, we can put our validation, etc.,

against this event type. The following example demonstrates this event.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">
<title>On Click Events</title>

<script type=“text/javascript”>

function showAlert() {
alert(“This is an alert on onclick event!”);
}
</script>
</head>
<body>

<input type=“button” onclick=“showAlert();” value=“Call

JavaScript” />
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. We are
invoking a JavaScript function “showAlert” through a button onclick event which is

displaying a message on an alert dialogue box.

|=] OnChckEvent.html W On Click Events 2 =0
W o file///Clodesk/Matthew/JavaScript %20T utonals/JS-Workspace/javascript-project/WebContent/ OnClickEvent. html | e .
[cal JavaScnpt

| This is an alert on anclick event!

0K

onsubmit Event Type

It is an event type that comes into play while we submit a HTML form. We can also put

our form validation against this event type.

In the following example, we are demonstrating how onsubmit event is triggered. We can

call a “validate ()” function before submitting a form data to the webserver. The form will
be submitted only if the “validate ()” function returns true, otherwise it will not be
submitted at all.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>On Submit Events</title>
<script type=“text/javascript”>
function validation() {
if(document.form1.textbox1.value != ”){

alert(‘Validation Passed’);

return true;

else{
alert (‘Text Box field cannot be empty!’);
return false;
}
}
</script>
</head>
<body>

<form name=“form1” method=“GET” action="“onClickEvent.html”

onsubmit=“return validation()”>
<input type=“text” name= “textbox1”/>
<input type=“submit” value=“Submit” />

</form>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we
are validating that the text box element cannot be blank or empty, if no value is entered in
it and the submit button is clicked then it will return false to the form submission and

display an alert message as “Text Box field cannot be empty!”

|5 OnSubmitEvent.html @@ On Submit Events 17 T

2 W | hileC odeskMatthew/ JavaScnpt %20T utonals/ J5-Workspace/javascript-project/WebContent/OnSubmatEvent.html | e .

—'I Subm

! Text Box fiekd cannot be empty!

onmouseover and onmouseout Event Types

These two are popular mouse event types which help us to create nice effects with images
or texts. The onmouseover event gets triggered when we bring our mouse over any web
element on the HTML page and the onmouseout event gets triggered when we move our

mouse out from that web element. The following example demonstrates these events.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Mouse Over and Out</title>
<script type=“text/javascript”>

function hoverMouse() {

alert (“Doing the Mouse Over”);

function hoverMouseOut() {
alert (“Taking the Mouse Out”);
}
</script>

</head>

<body>

<div onmouseover=“hoverMouse();”

onmouseout=“hoverMouseOut();”>
<h1> Bring your Mouse here to see the change </h1>
</div>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, when
we bring the mouse over on the heading division, we can see the alert messaging getting
invoked. Similarly, when we mouse out the region, we see another alert for moving the

mouse out of heading division.

W Mouse Over and Out 22 | MouzeOverAndCOut.html

WS il fCodesk/ Matthew, lavaSenpt %20T utonals/ 15-Workspace/javascrpt-progectWebContent/ MouseOverdndOut.b | [-

Bring your Mouse here to see the change

| Doing the Mouse Over

Standard Events present in HTML 5

The following ae the standard HTML 5 events attribute. All of these attributes have value
as script which indicates a Javascript function which is to be invoked and executed

against the triggered event.

Event Attribute Value Description

Offline script This attribute triggers when the

document goes offline.

Onabort script ~ This attribute triggers on an abort event.
Onafterprint script This attribute triggers after the document
is printed.

onbeforeonload script ~ This attribute triggers before the

document loads.

Onbeforeprint script ~ This attribute triggers before the

document is printed.

Onblur script ~ This attribute triggers when the window

loses focus.

Oncanplay script This attribute triggers when media can
start play, but might has to stop for
buffering.

oncanplaythrough script This attribute triggers when media can be
played to the end, without stopping for
buffering.

Onchange script This attribute triggers when an element

Onclick

oncontextmenu

Ondblclick

Ondrag

Ondragend

Ondragenter

Ondragleave

Ondragover

Ondragstart

Ondrop

Ondurationchange

script

script

script

script

script

script

script

script

script

script

script

changes.

This attribute triggers on a mouse click.

This attribute triggers when a context

menu is triggered.

This attribute triggers on a mouse
double-click.

This attribute triggers when an element is

dragged.

This attribute triggers at the end of a drag

operation.

This attribute triggers when an element

has been dragged to a valid drop target.

This attribute triggers when an element is

being dragged over a valid drop target.

This attribute triggers at the start of a

drag operation.

This attribute triggers at the start of a

drag operation.

This attribute triggers when dragged

element is being dropped.

This attribute triggers when the length of

the media is changed.

Onemptied

Onended

Onerror

Onfocus

onformchange

Onforminput

Onhaschange

Oninput

Oninvalid

Onkeydown

Onkeypress

script

script

script

script

script

script

script

script

script

script

script

This attribute triggers when a media
resource element suddenly becomes

empty.

This attribute triggers when media has

reach the end.

This attribute triggers when an error

occur.

This attribute triggers when the window

gets focus.

This attribute triggers when a form

changes.

This attribute triggers when a form gets

user input.

This attribute triggers when the

document has change.

This attribute triggers when an element

gets user input.

This attribute triggers when an element is

invalid.

This attribute triggers when a key is

pressed.

This attribute triggers when a key is

Onkeyup

onload

Onloadeddata

onloadedmetadata

Onloadstart

Onmessage

onmousedown

onmousemove

Onmouseout

Onmouseover

script

script

script

script

script

script

script

script

script

script

pressed and released.

This attribute triggers when a key is

released.

This attribute triggers when the

document loads.

This attribute triggers when media data is
loaded.

This attribute triggers when the duration
and other media data of a media element

is loaded.

This attribute triggers when the browser

starts to load the media data.

This attribute triggers when the message

is triggered.

This attribute triggers when a mouse

button is pressed.

This attribute triggers when the mouse

pointer moves.

This attribute triggers when the mouse

pointer moves out of an element.

This attribute triggers when the mouse

pOil’ltEI moves over an element.

Onmouseup

onmousewheel

Onoffline

Onoine

Ononline

Onpagehide

Onpageshow

Onpause

Onplay

Onplaying

Onpopstate

script

script

script

script

script

script

script

script

script

script

script

This attribute triggers when a mouse

button is released.

This attribute triggers when the mouse

wheel is being rotated.

This attribute triggers when the

document goes offline.

This attribute triggers when the

document comes online.

This attribute triggers when the

document comes online.

This attribute triggers when the window
is hidden.

This attribute triggers when the window

becomes visible.

This attribute triggers when media data is

paused.

This attribute triggers when media data is

going to start playing.

This attribute triggers when media data

has start playing.

This attribute triggers when the

window’s history changes.

onprogress

Onratechange

onreadystatechange

Onredo

Onresize

Onscroll

Onseeked

Onseeking

Onselect

Onstalled

script

script

script

script

script

script

script

script

script

script

This attribute triggers when the browser

is fetching the media data.

This attribute triggers when the media

data’s playing rate has changed.

This attribute triggers when the ready-

state changes.

This attribute triggers when the

document performs a redo.

This attribute triggers when the window

is resized.

This attribute triggers when an element’s

scrollbar is being scrolled.

This attribute triggers when a media
element’s seeking attribute is no longer

true, and the seeking has ended.

This attribute triggers when a media
element’s seeking attribute is true, and

the seeking has begun.

This attribute triggers when an element is

selected.

This attribute triggers when there is an

error in fetching media data.

Onstorage

Onsubmit

Onsuspend

Ontimeupdate

Onundo

Onunload

onvolumechange

Onwaiting

script

script

script

script

script

script

script

script

This attribute triggers when a document

loads.

This attribute triggers when a form is

submitted.

This attribute triggers when the browser
has been fetching media data, but

stopped before the entire media file was
fetched.

This attribute triggers when media

changes its playing position.

This attribute triggers when a document

performs an undo.

This attribute triggers when the user

leaves the document.

This attribute triggers when media
changes the volume, also when volume is

set to “mute”.

This attribute triggers when media has
stopped playing, but is expected to

resume.

Chapter 13

JavaScript Dialogue Boxes

Dialogue boxes are used in JavaScript to raise a warning using alert, or ask for a
confirmation, or to accept an input from the user. To support these features, JavaScript has

three types of dialogue boxes as follows.
Alert Dialogue Box
Confirmation Dialogue Box.
Prompt Dialogue Box

Alert Dialog Box

When we want to display a warning message to the users in a dialogue box, then we use
an alert dialogue box. E.g., when we validate a form using onsubmit event there we do not
accept any input from the user and just need to display a warning message, in this case we
use an alert box to display such a warning message. Alert box just has only one “OK”

button to click and proceed.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>On Submit Events</title>
<script type=“text/javascript”>
function validation() {
if(document.form1.textbox1.value != "){

alert(‘Validation Passed’);

return false;

else{
alert (‘Text Box field cannot be empty!’);

return false;

}

}

</script>
</head>
<body>

—

<form name=“form1” method=“GET” action=“onClickEvent.html”
onsubmit=“return validation()”>

<input type=“text” name= “textbox1”/>

<input type=“submit” value=“Submit” />

</form>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we

see an alert dialogue box.

|3 OnSubmitEvent.html @ On Submit Everts I T -
S .flle:."-'."c.' fodesk/Matthew/ lavaScnpt %20T utonals/ 15-Workspecejavascript-project/WebContent/OnSubmatvent.btml | [n
|| Subma

Message from webpage

l Text Box fiekd cannot be empty!

o]

Confirmation Dialog Box

In JavaScript language, a confirmation dialog box is used when we need to take user’s
opinion on any option. It displays a dialog box that has two buttons: OK button and

Cancel button.

When the user clicks on the OK button, then the window method “confirm ()” will return a
true value. Otherwise, if the user clicks on the Cancel button, then “confirm ()” method

will returns a false value. The following is an example on the confirmation dialogue box.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Confirm Box</title>
<script type=“text/javascript”>

function showAlert(){

confirm (“This is an confirm dialogue box

example!”);
}
</script>
</head>
<body>
<p>Confirm box demo example.</p>

<input type=“button” onclick=“showAlert();” value=“Call

JavaScript”/>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we

see a confirmation dialogue box.

@ Confirm Box I | 5] ConfirmBowhtmi O

W ot file//Clodesk/Matthew/ JavaScript %20Tutonals/ 15-Workspace/javascript- project/WebContent/ConfirmBonhtenl| < B

Confirm box demo example

0 This is an confirm dialogue box example!
Cancel
Prompt Dialog Box

In JavaScript language, a prompt dialog box is used when we want to pop-up a text box
that accepts the user input. Thus, it allows the system to interact with the user. The user is

required to enter the required data into the field and then click on the OK button.

Such a dialog box is displayed by using a method known as “prompt ()”. It accepts the

following two parameters.
A label that we want to display in the text box.
A default string which is display in the text box.
The prompt dialog box has the following two buttons.
The OK button.
The Cancel button.

When the user clicks on the OK button, then the window method “prompt ()” will return
the value which was entered by the user in the text box. Otherwise, if the user clicks on

the Cancel button, then the window method “prompt ()” will return a null value.

The following is an example on the prompt dialogue box.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>Prompt Box</title>
<script type=“text/javascript”>
function showAlert(){

prompt (“This is an prompt dialogue box

example!”);
}
</script>
</head>
<body>
<p>Prompt dialogue box demo example.</p>

<input type=“button” onclick=“showAlert();” value=“Call

JavaScript”/>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we

see a prompt dialogue box.

|
o htrm
B""ml@l’mw

@ Prompt

L=

- ﬂ I
vl [.
htmi
ptBoe
Prom,
; ebContent/!
ipt-preject/W
ascript-
utorials/JS-Workspace/jav
aScript®20T
ew/ Jav,
k/Matth,
[+/odes|
fibee/ 7/ C
: [le.
.- boxmmp
dialogue
Prompt

Chapter 14
JavaScript Void Keyword

In JavaScript language, the void keyword can be used as a unary operator which is

appeared before its single operand, and may be of any type. This unary operator specifies

an expression which is required to be evaluated without any return value.

The following is the syntax and an example of the void keyword.

<IDOCTYPE html>
<html>
<head>
<meta charset=“ISO-8859-1">
<title>Void Keyword Example 1</title>
</head>
<body>
<p>Click here to invoke an alert!</p>

<a href="javascript:void(alert(‘Here is the Void Keyword

demo’))”>Click Here!
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we

see an alert dialogue box that popped out on the click of the responsive hyperlink (“Click
Here!”). On the other hand, if void argument is empty then we see no response as in the
case of the second hyperlink (“No response link!”) as the expression “0” has no effect in

JavaScript. When “0” is evaluated, it does not loads back into the current document.

@ Void Keyword Example 1 | VordEsample] htmi

W 5 | fey /0 odesk/Matthew JavaSenpt %20 Tutorials/ J5-Workspace/ javascript-project/ WebContent/NosdExamplel heml ~ | = -

' Hetrw is the Viesd Keyword derme

Click here 10 invoke an alert!

Click Here!

Click here won't invoke any thing!

No response link!

=]

Alternatively, the void keyword in JavaScript is also used to generate the undefined value

as shown in the following example.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Void Example 2</title>
<script type=“text/javascript”>
function getVoidDemo(){
var Xx.,y,z;
x =void (y =50,z =700);
document.write(‘’x = +x+ ‘y=‘+y+z="+2z);
}
</script>

</head>

<body>
<p>Click to get the Result...</p>
<form>

<input type=“button” value=“Get Result”
onclick=*getVoidDemo();” />

</form>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here the
value of the ‘x’ variable is undefined, however variables ‘y’ and ‘z’ has the value as ‘50’

and ‘700’ respectively.

@ Chodesk\Matthew'\JavaScript Tutonals\JS-Workspace\javascript-project\ WebContent\\oidExample2htmi I3 | 5] VoidExample2 htm =

o _Iiie [Cf odesk/Matthew/ JavaScript %20Tutonials/)5-Workspace/javascript- project/WebContent/VoidEampleZ html . = -

x=undefined y=50z=T00

Chapter 15
JavaScript Objects

JavaScript language is an Object Oriented Programming (OOP) based language which

provides the following capabilities of OOPs language to the programmer.

Encapsulation — is the concept with which we can store all the related

information that includes data and methods, together in an object.

Aggregation — is the concept which enables to store one object inside another

object.

Inheritance — is the concept that enables a class to inherit or re-use the
properties and the methods of another class (or number of classes). It is also

known as parent class.

Polymorphism — is the concept that enables the programmer to write one
function/method that execute different task in different ways but defined with the

same name. Also known as method overloading.

Objects — are composed of attributes. An attribute can be a function or a

property. Function is considered to be a method of the object.

Object Properties in JavaScript

Object properties in JavaScript can be of any of the three primitive data types (Number,
String and Boolean), or any of the abstract data types (such as an object). Object
properties are the variables which are used internally in the object’s methods. They can
also be used as globally visible variables therefore, can be used throughout the page. The

following is the syntax and the example.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Objects Example</title>
<script type=“text/javascript”>
objectName.objectProperty = propertyValue;
var str = document.title;
</script>

</head>

<body>

</body>

</html>

Here we are assigning the ‘propertyValue’ variable value to the object property attribute

‘objectProperty’. The object is referred with the name as ‘objectName”’.

In the next statement of the above example, we are storing the value of the document title

using the “title” property of the document object into “str” variable.

Object Methods in JavaScript

Objects Methods are the functions with which the object do manipulation or required
executions. In JavaScript, the function differs from the method in the following way: A
function is a standalone unit of statements whereas a method is attached to an object that

can be referenced by the “this” keyword.

Methods can be used to display the object contents on the HTML page. They can perform
a complex mathematical operations on objects properties attributes and the input
parameters passed to the object method. E.g., during this tutorial, we have used the “write

()” method of the document object where we pass the string or text as a parameter to be

written on the HTML page.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Object Method Example</title>
<script type=“text/javascript”>
document.write(“Welcome to JavaScript Programming!”);
</script>

</head>

<body>

</body>

</html>

User-Defined Objects in JavaScript

In JavaScript language, all the user-defined objects as well as the built-in objects extends

to an object know as Object (similar to the JAVA language).

The new Operator in JavaScript

The “new” operator is used for the creation of an object instance. In order to create an
object in JavaScript, the statement has the new operator which is followed by the
constructor method as shown below. Here, the constructor methods are “Object ()”,

“Array ()”, and “Date ()”. These constructors are the built-in JavaScript functions.

<IDOCTYPE html>
<html>

<head>

<meta charset=“ISO-8859-1">
<title>The New Operator</title>
<script type=“text/javascript”>
var student = new Object();
var languages = new Array(“JavaScript”, “Pascal”, “Python”);
var day = new Date(“August 24, 1989”);
alert (day);
</script>
</head>

<body>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we
are displaying the properties of the Date object on the alert dialogue box.

& The New Operator 0 | [2] NewOperator htmd = 0
W 0 | file///Clodesk/Matthew/JavaScnpt 30T utorials/ 15-Workspace/javascript- project/WebContert/NewOperator.html - | n

I Thu Aug 24 1989 00:00:00 GMT-0400 (Eastern Daylight Tirne]

| o]

The “Object ()’ Constructor

As discussed before, the constructor is a function which creates and initializes a JavaScript
object. A special constructor function known as “Object ()” is used to build the object in
JavaScript. The value returned by the “Object ()” constructor is assigned back to a
variable known as object reference variable. The following example demonstrates the

creation of an Object in JavaScript.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Object Creation</title>

<script type=“text/javascript”>
var student = new Object();
student.name = “Appy”;
student.age = “217;
student.course = “JavaScript”;
function showDetails(){

alert (“Name: “+student.name+ ” Age: “+student.age+”

Course: “+student.course);
}

</script>

</head>

<body>

<input type=“button” onclick=“showDetails();” value=“Get Student
details!” />

</body>

</html>

This is to be noted that the object properties variables are not defined with the var

keyword.

Output

When we execute the above HTML program, the following will be the output.

@ Object Creation || ObjectCreation.htmi e

m
= i Efilue..-'.-'.-'(.-'s::-:le'slc;P.l«mhtw.'l.ha'Scri|:)'('qu[I'Tnu'(n:\nals.-'JS-'h"lmIfspacr,-'ja\;a;scn';:lt-;m:}-ei:t_-"n’t'ehC|:11t-em,-OI::j.e{'.cf|neatic:n.}'||t|w «| B n

Get Swdent detads!

| Name: Appy Age: 21 Course: JavaScript

Defining Methods for an Object in JavaScript

In the last example, we have demonstrated to how to use the constructor that creates the
object and assigns properties. In the following example, we are going to demonstrate an

example to define methods for an object in JavaScript.

<IDOCTYPE html>

<html>

<head>

<meta charset=“ISO-8859-1">

<title>Object Methods</title>

<script type=“text/javascript”>
function student(name, course){
this.name = name;

this.course = course;

}

</script>
</head>
<body>
<script type=“text/javascript”>
var record = new student(“Appy”, “JavaScript”);
alert(“name is : “ + record.name + “Course is “+ record.course);
</script>

</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we

have added a function along with an object.

@ Obpect Methods I | |5 ObjectMethodCreation.htmi =y
. file/ 7/ Cofadesk/Matthew/ JavaScript %20 Tutonals/ J5-Wor kspace/javascript-project/ WebContent/ObjectMethodCrests | e :

| nameis: AppyCourse is JavaScript

The ‘with’ Keyword in JavaScript

In JavaScript, the ‘with’ keyword is used as a shorthand to refer an object’s properties or

methods.

Here, the object which is specified as an argument to with becomes the default object for
the duration of the block that follows. In this case, the properties and methods for the
object can be used without naming the object. The following is the syntax and the

example.

<IDOCTYPE html>
<htmI>
<head>
<meta charset=“ISO-8859-1">
<title>With Keyword</title>
<script type=“text/javascript”>
//' A function that will work as a method

function addAge(years){

with(this){
age = years;
}
}

function student(name, course){
this.name = name;
this.course = course;
this.age = 0;
this.addAge = addAge; // Property that is a method.
}
</script>
</head>
<body>
<script type=“text/javascript”>
var record = new student(“Appy”, “JavaScript”);
record.addAge(21);

alert(“Name is : “ + record.name +

“\nCourse is : “ + record.course +

“\nAge is : “ + record.age);
</script>
</body>

</html>

Output

When we execute the above HTML program, the following will be the output. Here, we

have used the ‘with’ keyword to add the age later by assigning a method as a property.

@ With Keyword |=] WithKeyword.htm =

B ot file//Clodesk/Matthew/ JavaScript %20Tutonals/15-Workspace/javascript- project/WebContent WithKeyword html + | B n

Name is : Appy
! Course is : JavaScript
Ageis: 21

Native Objects in JavaScript

JavaScript language has many built-in or native objects. These native objects can be
accessed in the program from anywhere and they will work in the same way on any type

of browser that is operating on any type of the operating system. The following are the
important JavaScript Native Objects.

JavaScript Array Object.
JavaScript Boolean Object.
JavaScript Date Object.

JavaScript Math Object.

JavaScript Number Object.
JavaScript RegExp Object.

JavaScript String Object.

Conclusion

Thank you again for downloading this book!
I hope this book was able to help you learn JavaScript
The next step is to put these practices to work for you.

Thank you and good luck!

Preview Of Python Programming

Chapter 1

Introduction to Python Programming L.anguage

Did you know websites like YouTube and Dropbox use Python in their source code?
Python is a vast language which is easy to understand and apply. You can develop almost
anything using Python. Most of the operating systems (Mac, Linux, UNIX, etc.) other than
windows have python installed by default. It is an open source and free language. In this
eBook, we are going to learn this awesome code language and apply it on various
examples. There are no type declaration of methods, parameters, functions or variables
(like in other languages) in Python which makes its code short and simple. As mentioned
earlier, this language can be used in everything, whether you want to build a website, a
game or a search engine. The main advantage of using Python is that you do not have to

run compiler explicitly, it is purely interpreted language like Perl or Shell.

(13

File extension which is used by Python source file is “.py” and it is a case-sensitive
language, so “P” and “p” would be considered as two different variables. Also, Python
figures out the variable type on its own, for example, if you put x=4 and y="Python’ then it
will consider x as integer and y as string. We are going to learn all these basics in detail in

further chapters. Before moving forward, few important points to remember are:

[l

1. For assigning a value is used and for comparison “==" is used. Example,

x=4, y=8, x==y
2. “print” is used to print results.
3. All the mathematical operations like +, -, *, /, % are used with numbers

4. Variable is created when a value is assigned to it. Example, a=5 will create a

variable named “a” which has an integer value of 5. There is no need to define it
beforehand.

5. “+” can also be used to concatenate two string. Example, z= “Hi”, z= z +
“Python”

LN 11

6.For logical operations “and”, “or”, “not” are used instead of symbols.

There are three basic data types: integer (by default for numbers), floats (a=3.125) and

{4

string. String can be defined either by “” (double quotes) or single quotes (‘’). We are

going to see all the datatypes with proper examples in upcoming chapters.

Let’s look at the step by step guide to install Python on Windows operating system. As
mentioned earlier, if you are using other operating system like UNIX or Linux or Mac
then Python should be installed already and ready to use. You have to use “%python” to
get the details on Linux, press “CTRL + D” to exit. For running it on UNIX, “%python
filename.py” is used. Python prompts with three “greater than” symbol (>>>).

Click here to check out the rest of Python Programming on Amazon.

Or go to: http://amzn.to/2auRjNy

https://www.amazon.com/dp/B01FGZ8UXW
http://amzn.to/2auRjNy

